LEVEL

Training Courses, Workshops and Seminars

Data Visualisation and Communication

2021-09-08T03:57:01+00:00August 20th, 2020|Tags: , , , |

This course prepares data analytics professionals to communicate analytics results to business audiences, in a business context while being mindful of the skills, incentives, priorities and psychology of the audience. It also equips analysts [...]

Critical Thinking for Data Analytics

2021-09-08T03:54:32+00:00March 16th, 2020|Tags: |

This course is a vital first step in the data literacy journey, and the one that introduces the most vital and basic skills of the effective 21st century professional or leader. Working with data is not just about manipulating software tools : it is first and foremost about effective reasoning, using all available information. As such, this course loads the key “software” into the most vital hardware of the business - the human professional, enabling them to reason effectively with data, and thus realise the value that data analytics promises, deriving more reliable and correct insights and making better decisions.

Intro to R (+ data visualisation)

2021-04-13T04:19:20+00:00December 5th, 2018|Tags: , |

This R training course will introduce you to the R programming language, teaching you to create functions and customise code so you can manipulate data and begin to use R self-sufficiently in your work. R is the world’s most popular data mining and statistics package. It’s also free, and easy to use, with a range of intuitive graphical interfaces.

Intro to Python for Data Analysis

2021-03-16T06:59:15+00:00January 21st, 2019|Tags: , |

Python is a high-level, general-purpose language used by a thriving community of millions. Data-science teams often use it in their production environments and analysis pipelines, and it’s the tool of choice for elite data-mining competition winners and deep-learning innovations. This course provides a foundation for using Python in exploratory data analysis and visualisation, and as a stepping stone to machine learning.

DevOps Overview

2021-03-12T03:59:38+00:00March 10th, 2020|Tags: |

Traditional enterprises struggle with the agility of the IT development process. A cultural change is needed to enable predictable, repeatable, frequent, transparent and reliable releases in a cost-efficient manner. This one day DevOps Overview [...]

Fundamentals of AI, Machine Learning, Data Science and Predictive Analytics

2023-09-01T06:34:13+00:00November 30th, 2018|Tags: , , , , |

This course is an intuitive, hands-on introduction to ai, data science and machine learning, it's your artificial intelligence 101. The training focuses on fundamentals and key skills, leaving you with a deep understanding of the core concepts of ai and data science and even some of the more advanced tools used in the field. The course does not involve coding, or require any coding knowledge or experience. As our leading course, it has transformed the artificial intelligence (AI), machine learning (ML) and data science practice of the many managers, sponsors, key stakeholders, entrepreneurs and beginning data analytics and data science practitioners who have attended it.

Data Literacy for Everyone

2023-09-01T06:35:01+00:00January 22nd, 2019|Tags: , , |

This course is for workers and managers without a strong quantitative background. It introduces a range of skills and applications related to data literacy for digital transformations and critical thinking in such areas as forecasting, population measurement, set theory and logic, causal impact and attribution, scientific reasoning and the danger of cognitive biases. There are no prerequisites beyond high-school mathematics; this course has been designed to be approachable for everyone.

Advanced Analytics Using Apache Spark

2021-03-12T03:57:56+00:00February 28th, 2019|Tags: , |

With big data expert and author Jeffrey Aven. The third module in the “Big Data Development Using Apache Spark” series, this course provides the practical knowledge needed to perform statistical, machine learning and graph analysis operations at scale using Apache Spark. It enables data scientists and statisticians with experience in other frameworks to extend their knowledge to the Spark runtime environment with its specific APIs and libraries designed to implement machine learning and statistical analysis in a distributed and scalable processing environment.

Fraud and Anomaly Detection

2021-03-12T03:57:53+00:00February 11th, 2019|Tags: , |

This course presents statistical, computational and machine-learning techniques for predictive detection of fraud and security breaches. These methods are shown in the context of use cases for their application, and include the extraction of business rules and a framework for the inter-operation of human, rule-based, predictive and outlier-detection methods. Methods presented include predictive tools that do not rely on explicit fraud labels, as well as a range of outlier-detection techniques including unsupervised learning methods, notably the powerful random-forest algorithm, which can be used for all supervised and unsupervised applications, as well as cluster analysis, visualisation and fraud detection based on Benford’s law. The course will also cover the analysis and visualisation of social-network data. A basic knowledge of R and predictive analytics is advantageous.

Data Transformation and Analysis Using Apache Spark

2022-02-16T04:17:23+00:00February 21st, 2019|Tags: , |

With big data expert and author Jeffrey Aven. Learn how to develop applications using Apache Spark. The first module in the “Big Data Development Using Apache Spark” series, this course provides a detailed overview of the spark runtime and application architecture, processing patterns, functional programming using Python, fundamental API concepts, basic programming skills and deep dives into additional constructs including broadcast variables, accumulators, and storage and lineage options. Attendees will learn to understand the Apache Spark framework and runtime architecture, fundamentals of programming for Spark, gain mastery of basic transformations, actions, and operations, and be prepared for advanced topics in Spark including streaming and machine learning.

Go to Top