AI Engineering Level 2

Advanced Python 1

This class builds on the introductory Python class. Jupyter Notebook advanced use and customisation is covered as well as configuring multiple environments and kernels. The Numpy package is introduced for working with arrays and matrices and a deeper coverage of Pandas data analysis and manipulation methods is provided including working with time series data. Data exploration and advanced visualisations are taught using the Plotly and Seaborne libraries.

Data Driven Decision Making for Executives and Managers

This course is for executives and managers who want to leverage analytics to support their most vital decisions and enable better decision-making at the highest levels. It empowers senior executives with skills to make more effective use of data analytics. It covers contexts including strategic decision-making and shows attendees ways to use data to make better decisions. Attendees will learn how to receive, understand and make decisions from a range of analytics methods, including visualisation and dashboards. They will also be taught to work with analysts as effective customers.

Fraud and Anomaly Detection

This course presents statistical, computational and machine-learning techniques for predictive detection of fraud and security breaches. These methods are shown in the context of use cases for their application, and include the extraction of business rules and a framework for the interoperation of human, rule-based, predictive and outlier-detection methods. Methods presented include predictive tools that do not rely on explicit fraud labels, as well as a range of outlier-detection techniques including unsupervised learning methods, notably the powerful random-forest algorithm, which can be used for all supervised and unsupervised applications, as well as cluster analysis, visualisation and fraud detection based on Benford’s law. The course will also cover the analysis and visualisation of social-network data. A basic knowledge of R and predictive analytics is advantageous.

Advanced R 1

This class builds on “Intro to R (+data visualisation)” by providing students with powerful, modern R tools including pipes, the tidyverse, and many other packages that make coding for data analysis easier, more intuitive and more readable. The course will also provide a deeper view of functional programming in R, which also allows cleaner and more powerful coding, as well as R Markdown, R Notebooks, and the shiny package for interactive documentation, browser-based dashboards and GUIs for R code.

Agile Transition

This course describes the cultural and organisational aspects required for an organisation on the digital transformation path. A healthy corporate culture around data awareness is imperative to leverage the potential and value of data to the benefit of a company's business model. The organisation needs to reflect the culture and reward those who add value to a corporation by using data and analytics. Content presented explains personality and skill identification, how to prototype an agile analytics organisation and describe how to validate change capabilities, close gaps and execute a transition strategy.

Advanced Machine Learning Masterclass 1

This course is for experienced machine-learning practitioners who want to take their skills to the next level by using R to hone their abilities as predictive modellers. Trainees will learn essential techniques for real machine-learning model development, helping them to build more accurate models. In the masterclass, participants will work to deploy, test, and improve their models.

Advanced Machine Learning Masterclass 2: Random Forests

This course is for experienced machine-learning practitioners who want to take their skills to the next level by using R to hone their abilities as predictive modellers. Trainees will learn essential techniques for real machine-learning model development, helping them to build more accurate models. In the masterclass, participants will work to deploy, test, and improve their models.

Innovating with Best Practices to Modernise Delivery Architecture and Governance

Organisations often struggle with the conflicting goals of both delivering production reporting with high reliability while at the same time creating new value propositions from their data assets. Gartner has observed that organizations that focus only on mode one (predictable) deployment of analytics in the construction of reliable, stable, and high-performance capabilities will very often lag the marketplace in delivering competitive insights because the domain is moving too fast for traditional SDLC methodologies. Explorative analytics requires a very different model for identifying analytic opportunities, managing teams, and deploying into production. Rapid progress in the areas of machine learning and artificial intelligence exacerbates the need for bi-modal deployment of analytics. In this workshop we will describe best practices in both architecture and governance necessary to modernise an enterprise to enable participation in the digital economy.

Cost-Based Optimisation: Obtaining the Best Execution Plan for Complex Queries

Optimiser choices in determining the execution plan for complex queries is a dominant factor in the performance delivery for a data foundation environment. The goal of this workshop is to de-mystify the inner workings of cost-based optimisation for complex query workloads. We will discuss the differences between rule-based optimisation and cost-based optimisation with a focus on how a cost-based optimization enumerates and selects among possible execution plans for a complex query. The influences of parallelism and hardware configuration on plan selection will be discussed along with the importance of data demographics. Advanced statistics collection is discussed as the foundational input for decision-making within the cost-based optimiser. Performance characteristics and optimiser selection among different join and indexing opportunities will also be discussed with examples. The inner workings of the query re-write engine will be described along with the performance implications of various re-write strategies.

Social Network Analysis: Practical Use Cases and Implementation

Social networking via Web 2.0 applications such as LinkedIn and Facebook has created huge interest in understanding the connections between individuals to predict patterns of churn, influencers related to early adoption of new products and services, successful pricing strategies for certain kinds of services, and customer segmentation. We will explain how to use these advanced analytic techniques with mini case studies across a wide range of industries including telecommunications, financial services, health care, retailing, and government agencies.