Data Science Level 1

Intro to Python for Data Analysis

Python is a high-level, general-purpose language used by a thriving community of millions. Data-science teams often use it in their production environments and analysis pipelines, and it’s the tool of choice for elite data-mining competition winners and deep-learning innovations. This course provides a foundation for using Python in exploratory data analysis and visualisation, and as a stepping stone to machine learning.

Overcoming Information Overload with Advanced Practices in Data Visualisation

In this workshop, we explore best practices in deriving insight from vast amounts of data using visualisation techniques. Examples from traditional data as well as an in-depth look at the underlying technologies for visualisation in support of geospatial analytics will be undertaken. We will examine visualisation for both strategic and operational BI.

Data Ethics DRAFT

Data ethics is rapidly becoming the most critical aspect of engaging in a data driven, digital world. Significant backlash against industry giants like Facebook and Google for their data practices has pushed data ethics into mainstream society. With the ACCC signaling its intentions to focus on data practices and a host of new legislation, led by GDPR in Europe, the open data movement and the Consumer Data Right in Australia, it has become a key concern for digital consumers and the companies that serve them. The course covers the practical issues involved in implementing data ethics and uses real world illustrations and cases. We start with high profile data ethics cases and cover the essentials of the new legislation. We then walk through a data ethics policy. Day 2 focuses on a toolkit for implementing data trust and privacy by design, then covers consent and transparency requirements. It closes with a real-world framework for the governance required and an overview of the practical implementation steps.

Data Governance 1

This two day course provides an informed, realistic and comprehensive foundation for establishing best practice Data Governance in your organisation. Suitable for every level from CDO to executive to data steward, this highly practical course will equip you with the tools and strategies needed to successfully create and implement a Data Governance strategy and roadmap.

Data Driven Decision Making for Executives and Managers

This course is for executives and managers who want to leverage analytics to support their most vital decisions and enable better decision-making at the highest levels. It empowers senior executives with skills to make more effective use of data analytics. It covers contexts including strategic decision-making and shows attendees ways to use data to make better decisions. Attendees will learn how to receive, understand and make decisions from a range of analytics methods, including visualisation and dashboards. They will also be taught to work with analysts as effective customers.

Leadership and Resilience Skills for Data Professionals

Many people today have been developed emotionally and mentally for an era that no longer really exists. This has created a critical soft-skills gap between current workforce ability and business requirements today. In this course participants learn to ‘readapt’ their soft skills so that they are aligned with a thriving 21st century business. They are also given a simple framework from which to continue the self-development so that the training instigates sustainable change.

Agile Insights

This course presents a process and methods for an agile analytics delivery. Agile Insights reflects the capabilities required by any organization to develop insights from data and validating potential business value.Content presented describes the process, how it is executed and how it can be deployed as a standard process inside an organization. The course will also share best practices, highlight potential tripwires to watch out for, as well as roles and resources required.

Social Network Analysis: Practical Use Cases and Implementation

Social networking via Web 2.0 applications such as LinkedIn and Facebook has created huge interest in understanding the connections between individuals to predict patterns of churn, influencers related to early adoption of new products and services, successful pricing strategies for certain kinds of services, and customer segmentation. We will explain how to use these advanced analytic techniques with mini case studies across a wide range of industries including telecommunications, financial services, health care, retailing, and government agencies.