Business

Intro to Predictive Analytics, Machine Learning, Data Science and AI

Our leading course has transformed the machine-learning and data-science practice of the many managers, sponsors, key stakeholders, entrepreneurs and beginning data-science practitioners who have attended it. This course is an intuitive, hands-on introduction to data science and machine learning. The training focuses on central concepts and key skills, leaving the trainee with a deep understanding of the foundations of data science and even some of the more advanced tools used in the field. The course does not involve coding, or require any coding knowledge or experience.

Best Practices in Enterprise Information Management

The effective management of enterprise information for analytics deployment requires best practices in the areas of people, processes, and technology. In this talk we will share both successful and unsuccessful practices in these areas. The scope of this workshop will involve five key areas of enterprise information management: (1) metadata management, (2) data quality management, (3) data security and privacy, (4) master data management, and (5) data integration.

Overcoming Information Overload with Advanced Practices in Data Visualisation

In this workshop, we explore best practices in deriving insight from vast amounts of data using visualisation techniques. Examples from traditional data as well as an in-depth look at the underlying technologies for visualisation in support of geospatial analytics will be undertaken. We will examine visualisation for both strategic and operational BI.

Real-Time Analytics Development and Deployment

Real-time analytics is rapidly changing the landscape for deployment of decision support capability. The challenges of supporting extreme service levels in the areas of performance, availability, and data freshness demand new methods for data warehouse construction. Particular attention is paid to architectural topologies for successful implementation and the role of frameworks for Microservices deployment. In this workshop we will discuss evolution of data warehousing technology and new methods for meeting the associated service levels with each stage of evolution.

Data Science and Big Data Analytics: Leveraging Best Practices and Avoiding Pitfalls

Data science is the key to business success in the information economy. This workshop will teach you about best practices in deploying a data science capability for your organisation. Technology is the easy part; the hard part is creating the right organisational and delivery framework in which data science can be successful in your organisation. We will discuss the necessary skill sets for a successful data scientist and the environment that will allow them to thrive. We will draw a strong distinction between “Data R&D” and “Data Product” capabilities within an enterprise and speak to the different skill sets, governance, and technologies needed across these areas. We will also explore the use of open data sets and open source software tools to enable best results from data science in large organisations. Advanced data visualisation will be described as a critical component of a big data analytics deployment strategy. We will also talk about the many pitfalls and how to avoid them.

Strategic Decision Making with Data for Executives

This course is for executives and managers who want to leverage analytics to support their most vital decisions and enable better decision-making at the highest levels. It empowers senior executives with skills to make more effective use of data analytics. It covers contexts including strategic decision-making and shows attendees ways to use data to make better decisions. Attendees will learn how to receive, understand and make decisions from a range of analytics methods, including visualisation and dashboards. They will also be taught to work with analysts as effective customers.

Data Governance 1

This two day course provides an informed, realistic and comprehensive foundation for establishing best practice Data Governance in your organisation. Suitable for every level from CDO to executive to data steward, this highly practical course will equip you with the tools and strategies needed to successfully create and implement a Data Governance strategy and roadmap.

Innovating with Best Practices to Modernise Delivery Architecture and Governance

Organisations often struggle with the conflicting goals of both delivering production reporting with high reliability while at the same time creating new value propositions from their data assets. Gartner has observed that organizations that focus only on mode one (predictable) deployment of analytics in the construction of reliable, stable, and high-performance capabilities will very often lag the marketplace in delivering competitive insights because the domain is moving too fast for traditional SDLC methodologies. Explorative analytics requires a very different model for identifying analytic opportunities, managing teams, and deploying into production. Rapid progress in the areas of machine learning and artificial intelligence exacerbates the need for bi-modal deployment of analytics. In this workshop we will describe best practices in both architecture and governance necessary to modernise an enterprise to enable participation in the digital economy.

The Future of Analytics

This full day workshop examines the trends in analytics deployment and developments in advanced technology. The implications of these technology developments for data foundation implementations will be discussed with examples in future architecture and deployment. This workshop presents best practices for deployment of a next generation data management implementation as the realization of analytic capability for mobile devices and consumer intelligence. We will also explore emerging trends related to big data analytics using content from Web 3.0 applications and other non-traditional data sources such as sensors and rich media.

Quantum Computing

This is an introduction to the exciting new field of quantum computing, including programming actual quantum computers in the cloud. Quantum computing promises to revolutionise cryptography, machine learning, cyber security, weather forecasting and a host of other mathematical and high-performance computing fields. A practical component will include writing quantum programs and executing them on simulators as well as on actual quantum computers in the cloud.

Blockchain, Smart Contracts and Cryptocurrency

Blockchain is one of the most disruptive and least understood technologies to emerge over the previous decade. This course gives participants an intuitive understanding of blockchain in both public and private contexts, allowing them to distinguish genuine use cases from hype. We explore public crypto-currencies, smart contracts and consortium chains, interspersing theory with case studies from areas such as financial markets, health care, trade finance, and supply chain. The course does not require a technical background.

Agile Insights

This course presents a process and methods for an agile analytics delivery. Agile Insights reflects the capabilities required by any organization to develop insights from data and validating potential business value.Content presented describes the process, how it is executed and how it can be deployed as a standard process inside an organization. The course will also share best practices, highlight potential tripwires to watch out for, as well as roles and resources required.

Capacity Planning for Enterprise Data Deployment

This workshop describes a framework for capacity planning in an enterprise data environment. We will propose a model for defining service level agreements (SLAs) and then using these SLAs to drive the capacity planning and configuration for enterprise data solutions. Guidelines will be provided for capacity planning in a mixed workload environment involving both strategic and tactical decision support. Performance implications related to technology trends in multi-core CPU deployment, large memory deployment, and high density disk drives will be described. In addition, the capacity planning implications for different approaches for data acquisition will be considered.