Data Governance Level 1

Best Practices in Enterprise Information Management

The effective management of enterprise information for analytics deployment requires best practices in the areas of people, processes, and technology. In this talk we will share both successful and unsuccessful practices in these areas. The scope of this workshop will involve five key areas of enterprise information management: (1) metadata management, (2) data quality management, (3) data security and privacy, (4) master data management, and (5) data integration.

Agile Data Management Architecture

This full-day workshop examines the trends in analytic technologies, methodologies, and use cases. The implications of these developments for deployment of analytic capabilities will be discussed with examples in future architecture and implementation. This workshop also presents best practices for deployment of next generation analytics.

Innovating with Best Practices to Modernise Delivery Architecture and Governance

Organisations often struggle with the conflicting goals of both delivering production reporting with high reliability while at the same time creating new value propositions from their data assets. Gartner has observed that organizations that focus only on mode one (predictable) deployment of analytics in the construction of reliable, stable, and high-performance capabilities will very often lag the marketplace in delivering competitive insights because the domain is moving too fast for traditional SDLC methodologies. Explorative analytics requires a very different model for identifying analytic opportunities, managing teams, and deploying into production. Rapid progress in the areas of machine learning and artificial intelligence exacerbates the need for bi-modal deployment of analytics. In this workshop we will describe best practices in both architecture and governance necessary to modernise an enterprise to enable participation in the digital economy.

Capacity Planning for Enterprise Data Deployment

This workshop describes a framework for capacity planning in an enterprise data environment. We will propose a model for defining service level agreements (SLAs) and then using these SLAs to drive the capacity planning and configuration for enterprise data solutions. Guidelines will be provided for capacity planning in a mixed workload environment involving both strategic and tactical decision support. Performance implications related to technology trends in multi-core CPU deployment, large memory deployment, and high density disk drives will be described. In addition, the capacity planning implications for different approaches for data acquisition will be considered.