Loading...

Data Governance Curriculum

Our Data Governance Curriculum takes data culture to the next level of awareness. Those taking control or responsibility for data structures, management and ethics will gain a deeper understanding of the data governance process.

Data Literacy for Everyone

With the advent of automation, humans’ role has become to do what computers cannot. Many more white-collar workers—perhaps all of them—will end up “working with data” to some extent. This course for managers and workers without a strong quantitative background introduces a range of skills and applications related to critical thinking in such areas as forecasting, population measurement, set theory and logic, causal impact and attribution, scientific reasoning and the danger of cognitive biases. There are no prerequisites beyond high-school mathematics; this course has been designed to be approachable for everyone.

Intro to Predictive Analytics, Machine Learning, Data Science and AI

Our leading course has transformed the machine-learning and data-science practice of the many managers, sponsors, key stakeholders, entrepreneurs and beginning data-science practitioners who have attended it. This course is an intuitive, hands-on introduction to data science and machine learning. The training focuses on central concepts and key skills, leaving the trainee with a deep understanding of the foundations of data science and even some of the more advanced tools used in the field. The course does not involve coding, or require any coding knowledge or experience.

Best Practices in Enterprise Information Management

The effective management of enterprise information for analytics deployment requires best practices in the areas of people, processes, and technology. In this talk we will share both successful and unsuccessful practices in these areas. The scope of this workshop will involve five key areas of enterprise information management: (1) metadata management, (2) data quality management, (3) data security and privacy, (4) master data management, and (5) data integration.

Overcoming Information Overload with Advanced Practices in Data Visualisation

In this workshop, we explore best practices in deriving insight from vast amounts of data using visualisation techniques. Examples from traditional data as well as an in-depth look at the underlying technologies for visualisation in support of geospatial analytics will be undertaken. We will examine visualisation for both strategic and operational BI.

Data Science and Big Data Analytics: Leveraging Best Practices and Avoiding Pitfalls

Data science is the key to business success in the information economy. This workshop will teach you about best practices in deploying a data science capability for your organisation. Technology is the easy part; the hard part is creating the right organisational and delivery framework in which data science can be successful in your organisation. We will discuss the necessary skill sets for a successful data scientist and the environment that will allow them to thrive. We will draw a strong distinction between “Data R&D” and “Data Product” capabilities within an enterprise and speak to the different skill sets, governance, and technologies needed across these areas. We will also explore the use of open data sets and open source software tools to enable best results from data science in large organisations. Advanced data visualisation will be described as a critical component of a big data analytics deployment strategy. We will also talk about the many pitfalls and how to avoid them.

Strategic Decision Making with Data for Executives

This course is for executives and managers who want to leverage analytics to support their most vital decisions and enable better decision-making at the highest levels. It empowers senior executives with skills to make more effective use of data analytics. It covers contexts including strategic decision-making and shows attendees ways to use data to make better decisions. Attendees will learn how to receive, understand and make decisions from a range of analytics methods, including visualisation and dashboards. They will also be taught to work with analysts as effective customers.

Agile Data Management Architecture

This full-day workshop examines the trends in analytic technologies, methodologies, and use cases. The implications of these developments for deployment of analytic capabilities will be discussed with examples in future architecture and implementation. This workshop also presents best practices for deployment of next generation analytics.

Data Governance 1

This two day course provides an informed, realistic and comprehensive foundation for establishing best practice Data Governance in your organisation. Suitable for every level from CDO to executive to data steward, this highly practical course will equip you with the tools and strategies needed to successfully create and implement a Data Governance strategy and roadmap.

Innovating with Best Practices to Modernise Delivery Architecture and Governance

Organisations often struggle with the conflicting goals of both delivering production reporting with high reliability while at the same time creating new value propositions from their data assets. Gartner has observed that organizations that focus only on mode one (predictable) deployment of analytics in the construction of reliable, stable, and high-performance capabilities will very often lag the marketplace in delivering competitive insights because the domain is moving too fast for traditional SDLC methodologies. Explorative analytics requires a very different model for identifying analytic opportunities, managing teams, and deploying into production. Rapid progress in the areas of machine learning and artificial intelligence exacerbates the need for bi-modal deployment of analytics. In this workshop we will describe best practices in both architecture and governance necessary to modernise an enterprise to enable participation in the digital economy.

Optimising Your Big Data Ecosystem

Big Data exploitation has the potential to revolutionise the analytic value proposition for organisations that are able to successfully harness these capabilities. However, the architectural components necessary for success in Big Data analytics are different than those used in traditional data warehousing. This workshop will provide a framework for Big Data exploitation along with recommendations for architectural deployment of Big Data solutions.

The Future of Analytics

This full day workshop examines the trends in analytics deployment and developments in advanced technology. The implications of these technology developments for data foundation implementations will be discussed with examples in future architecture and deployment. This workshop presents best practices for deployment of a next generation data management implementation as the realization of analytic capability for mobile devices and consumer intelligence. We will also explore emerging trends related to big data analytics using content from Web 3.0 applications and other non-traditional data sources such as sensors and rich media.

Data Transformation and Analysis Using Apache Spark

With big data expert and author Jeffrey Aven. The first module in the “Big Data Development Using Apache Spark” series, this course provides a detailed overview of the spark runtime and application architecture, processing patterns, functional programming using Python, fundamental API concepts, basic programming skills and deep dives into additional constructs including broadcast variables, accumulators, and storage and lineage options. Attendees will learn to understand the Spark framework and runtime architecture, fundamentals of programming for Spark, gain mastery of basic transformations, actions, and operations, and be prepared for advanced topics in Spark including streaming and machine learning.

Agile Insights

This course presents a process and methods for an agile analytics delivery. Agile Insights reflects the capabilities required by any organization to develop insights from data and validating potential business value.Content presented describes the process, how it is executed and how it can be deployed as a standard process inside an organization. The course will also share best practices, highlight potential tripwires to watch out for, as well as roles and resources required.

Agile Transition

This course describes the cultural and organisational aspects required for an organisation on the digital transformation path. A healthy corporate culture around data awareness is imperative to leverage the potential and value of data to the benefit of a company's business model. The organisation needs to reflect the culture and reward those who add value to a corporation by using data and analytics. Content presented explains personality and skill identification, how to prototype an agile analytics organisation and describe how to validate change capabilities, close gaps and execute a transition strategy.