Data Culture Electives

Intro to Predictive Analytics, Machine Learning, Data Science and AI

Our leading course has transformed the machine-learning and data-science practice of the many managers, sponsors, key stakeholders, entrepreneurs and beginning data-science practitioners who have attended it. This course is an intuitive, hands-on introduction to data science and machine learning. The training focuses on central concepts and key skills, leaving the trainee with a deep understanding of the foundations of data science and even some of the more advanced tools used in the field. The course does not involve coding, or require any coding knowledge or experience.

Overcoming Information Overload with Advanced Practices in Data Visualisation

In this workshop, we explore best practices in deriving insight from vast amounts of data using visualisation techniques. Examples from traditional data as well as an in-depth look at the underlying technologies for visualisation in support of geospatial analytics will be undertaken. We will examine visualisation for both strategic and operational BI.

Intro to R (+ data visualisation)

R is the world’s most popular data mining and statistics package. It’s also free, and easy to use, with a range of intuitive graphical interfaces. This two-day course will introduce you to the R programming language, teaching you to create functions and customise code so you can manipulate data and begin to use R self-sufficiently in your work.

Intro to Python for Data Analysis

Python is a high-level, general-purpose language used by a thriving community of millions. Data-science teams often use it in their production environments and analysis pipelines, and it’s the tool of choice for elite data-mining competition winners and deep-learning innovations. This course provides a foundation for using Python in exploratory data analysis and visualisation, and as a stepping stone to machine learning.

Strategic Decision Making with Data for Executives

This course is for executives and managers who want to leverage analytics to support their most vital decisions and enable better decision-making at the highest levels. It empowers senior executives with skills to make more effective use of data analytics. It covers contexts including strategic decision-making and shows attendees ways to use data to make better decisions. Attendees will learn how to receive, understand and make decisions from a range of analytics methods, including visualisation and dashboards. They will also be taught to work with analysts as effective customers.

Data Governance 1

This two day course provides an informed, realistic and comprehensive foundation for establishing best practice Data Governance in your organisation. Suitable for every level from CDO to executive to data steward, this highly practical course will equip you with the tools and strategies needed to successfully create and implement a Data Governance strategy and roadmap.

Agile Insights

This course presents a process and methods for an agile analytics delivery. Agile Insights reflects the capabilities required by any organization to develop insights from data and validating potential business value.Content presented describes the process, how it is executed and how it can be deployed as a standard process inside an organization. The course will also share best practices, highlight potential tripwires to watch out for, as well as roles and resources required.

Social Network Analysis: Practical Use Cases and Implementation

Social networking via Web 2.0 applications such as LinkedIn and Facebook has created huge interest in understanding the connections between individuals to predict patterns of churn, influencers related to early adoption of new products and services, successful pricing strategies for certain kinds of services, and customer segmentation. We will explain how to use these advanced analytic techniques with mini case studies across a wide range of industries including telecommunications, financial services, health care, retailing, and government agencies.